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Abstract

In this paper, the spectral volume (SV) method is extended to solve viscous flow governed by the Navier–Stokes equa-
tions. Several techniques to discretize the viscous fluxes have been tested, and a formulation similar to the local discontin-
uous Galerkin (DG) approach developed for the DG method has been selected in the present study. The SV method
combines two key ideas, which are the bases of the finite volume and the finite element methods, i.e., the physics of wave
propagation accounted for by the use of a Riemann solver and high-order accuracy achieved through high-order polyno-
mial reconstructions within spectral volumes. The formulation of the SV method for a 2D advection-diffusion equation
and the compressible Navier–Stokes equations is described. Accuracy studies are performed using problems with analytical
solutions. The solver is used to compute laminar viscous flow problems to shown its potential.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We continue the development of the spectral (finite) volume (SV) method for hyperbolic conservation laws
on unstructured grids following the basic formulation [27], development for two-dimensional scalar conserva-
tion laws [28], one-dimensional systems and partition optimization [29], two-dimensional systems [30], and
three-dimensional linear systems [14]. In the present study, the SV method is extended to compute viscous
flows governed by the Navier–Stokes equations. The SV method belongs to a general class of Godunov-type
finite volume method [11,26], which has been under development for several decades, and has become the
state-of-the-art for the numerical solution of hyperbolic conservation laws. For a more detailed review of
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the literature on the Godunov-type method, refer to [27], and the references therein. Some widely used numer-
ical methods for conservation laws such as the k-exact finite volume [2,10], the essentially non-oscillatory
(ENO) [12,1], and weighted ENO [13] methods are also Godunov-type methods. The SV method is also
related to a popular finite-element method for hyperbolic conservation laws, the discontinuous Galerkin
(DG) method [5–8] in that multiple degrees of freedom are used in a single element. Comparisons between
the DG and SV methods have been made recently [24,33]. The SV method avoids the volume integral required
in the DG method. However, it does introduce more interfaces where more Riemann problems are solved. For
2D Euler equations, both methods seem to achieve similar efficiency [24]. Both the DG and SV methods are
capable of achieving the optimal order of accuracy. The DG method usually has a lower error magnitude, but
the SV method allows larger time steps. Due to its inherent property of subcell resolution, the SV method
appears to capture discontinuities with a higher resolution than the DG method.

Ultimately, we wish to apply the SV method to perform large eddy simulation and direct numerical
simulation of turbulent flow for problems with complex geometries. To achieve this goal, we must first find
a technique to properly discretize the second-order viscous terms. In the second-order finite volume method,
the solution gradients at an interface are usually computed by averaging the gradients of the neighboring cells
sharing the face. For higher-order elements, special care has to be taken in computing the solution gradients.
For example, Cockburn and Shu developed the so-called local discontinuous Galerkin method (LDG) to treat
the second-order viscous terms and proved stability and convergence with error estimates [9] motivated by the
successful numerical experiments of Bassi and Rebay [3]. Baumann and Oden [4], Oden et al. [16] introduced
various penalty-type methods for the discretization of second-order viscous terms. Riviere et al. [17] analyzed
three discontinuous Galerkin approximations for solving elliptic problems in two or three dimensions. More
recently, Shu [22] summarized three different formulations for the diffusion equation, and Zhang and Shu [34]
performed a Fourier type analysis for these three formulations. Recently, several formulations based on the
successful LDG and penalty-type approaches have been developed and analyzed for the SV method using
the 1D pure diffusion equation [25]. Three SV formulations, i.e., naı̈ve formulation, local SV (LSV) and
penalty SV (PSV) approaches, are tested. In the naı̈ve formulation, the gradients on a face are obtained by
averaging the gradients from the two cells sharing the face. It was found that the naı̈ve formulation converges
to the wrong solution, while the LSV and the PSV approaches are consistent, stable and convergent. It was
shown that the LSV method achieved the optimal order of accuracy, i.e., (k + 1)th order for degree k polyno-
mial reconstructions. The PSV approach, however, achieved only kth order accuracy if k is even. Therefore,
the LSV approach is selected for the extension to the Navier–Stokes equations in the present study. Before we
attempt to solve the full 2D Navier–Stokes equations, the LSV formulation is further tested on 1D (both linear
and non-linear) and 2D convection-diffusion equations.

The paper is therefore organized as follows. In Section 2, we describe the spectral volume formulation for
the 2D convection-diffusion equation. The degeneration from 2D to 1D should be obvious. After that, the
extension of the SV method to the Navier–Stokes equations is presented in Section 3. Section 4 presents
numerical results including accuracy studies for the convection-diffusion equation. In addition, computations
of laminar flows over a flat plate, a circular cylinder, and a NACA0012 airfoil are carried out, and results are
compared with benchmark computations. Finally, conclusions and some possible future work are summarized
in Section 5.
2. Spectral volume formulation for 2D convection-diffusion equation

For the sake of simplicity, the following 2D convection-diffusion equation is considered first in domain X
with proper initial and boundary conditions
ou
ot
þr � ðbuÞ � r � ðlruÞ ¼ 0; ð2:1Þ
where b is the convective velocity vector and l is a positive diffusion coefficient. The computational domain X
is discretized into N non-overlapping triangular cells. These cells, denoted as Si, are called spectral volumes
(SVs) in the SV method, i.e., X ¼

SN
i¼1Si. An SV is further partitioned into a set of structured subcells, called

control volumes (CVs), depending on the degree of the reconstruction polynomial. The partitions to be used in
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this paper are shown in Fig. 1 for various degrees of reconstruction. The degrees-of-freedom (DOFs) in the SV
method are the subcell-averages of the state variable. Let the jth CV of Si be denoted by Ci,j. Following the
local DG (LDG) approach [13,14,21], we define an auxiliary variable
q ¼ ru. ð2:2Þ

Eq. (2.1) then becomes
ou
ot
þr � ðbuÞ � r � ðlqÞ ¼ 0. ð2:3Þ
Integrating (2.2) and (2.3) in Ci,j and using the Gauss�s (divergence) theorem, we obtain
�qi;jV i;j ¼
XK

r¼1

Z
Ar

undA; ð2:4Þ

d�ui;j

dt
V i;j þ

XK

r¼1

Z
Ar

bu � ndA�
XK

r¼1

Z
Ar

lq � ndA ¼ 0; ð2:5Þ
Ci,j

1/4 

1/15 

a

b

c

Fig. 1. Partitions of various orders in a triangular spectral volume. (a) Linear; (b) quadratic; and (c) cubic.
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where �qi;j and �ui;j are the CV-averaged gradient and solution in Ci,j, K is the number of faces in Ci,j, and Ar

represents the rth face of Ci,j and n is the unit surface normal vector. Since the solution u is cell-wise
continuous (i.e., continuous across the CVs inside a SV), u and q at SV boundaries are not well defined,
and therefore they are replaced with the so-called ‘‘numerical fluxes’’ û; ~u; and q̂. Eqs. (2.4) and (2.5) thus
become
�qi;jV i;j ¼
XK

r¼1

Z
Ar

ûndA; ð2:6Þ

d�ui;j

dt
V i;j þ

XK

r¼1

Z
Ar

b~u � ndA�
XK

r¼1

Z
Ar

lq̂ � ndA ¼ 0. ð2:7Þ
For the inviscid flux, one can use an approximate Riemann solver such as the Rusanov [19] or Roe [18]
Riemann solver. In the scalar case, both fluxes degenerate to the following upwind flux:
~u ¼
uL; b � n > 0;

uR; b � n < 0;

�
ð2:8Þ
where uL and uR are the solution at the left cell or the right cell of face Ar. The other two numerical fluxes are
defined by alternating the direction in the following manner according to [9]:
û ¼ uL;

q̂ ¼ qR;
ð2:9Þ
or
û ¼ uR;

q̂ ¼ qL.
ð2:10Þ
In fact, both (2.9) and (2.10) are valid choices. For the sake of easy boundary treatment, (2.10) is selected in
the present study since boundary faces are oriented in such a way that the normals all point out of the com-
putational domain. In this case, we do not need a boundary condition for the gradients at all the boundary
faces. Other aspects of the SV method are already described in the earlier papers [28,30], and details are
not repeated here. For example, all the surface integrals in (2.6) and (2.7) are performed with appropriate
Gauss quadrature formulas. For time integration, we use the third-order or fourth-order TVD (total variation
diminishing) or SSP (strong-stability-preserving) Runge–Kutta schemes [20,23]. The time step is approxi-
mately modified in the 1D scalar case using
Dt ¼ CFL
jbj
Dxþ

l
Dx2

; ð2:11Þ
where Dx is the cell size in 1D. In 2D, the time step is computed according to
Dt ¼ CFLP
r

jbjAr

V þ
lA2

r
V 2

� � . ð2:12Þ
3. Extension to the Navier–Stokes equations

With the description given for the convection-diffusion equation, the extension to the Navier–Stokes equa-
tions is straightforward. We consider the two-dimensional Navier–Stokes equations written in the conserva-
tive form
oQ
ot
þr �~F eðQÞ � r �~F vðQ;rQÞ ¼ 0; ð3:1aÞ
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where the conservative variables Q and the Cartesian components fe(Q) and ge(Q) of the inviscid flux vector
~F eðQÞ are given by
Q ¼

q

qu

qv

E

8>>><
>>>:

9>>>=
>>>;
; f eðQÞ ¼

qu

qu2 þ p

quv

uðE þ pÞ

8>>><
>>>:

9>>>=
>>>;
; geðQÞ ¼

qv

quv

qv2 þ p

vðE þ pÞ

8>>><
>>>:

9>>>=
>>>;

. ð3:1bÞ
Here, q is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the
total energy. The pressure is related to the total energy by
E ¼ p
c� 1

þ 1

2
qðu2 þ v2Þ ð3:1cÞ
with a constant ratio of specific heats c, which is taken to be 1.4 in all the simulations in this paper. The Carte-
sian components fv(Q,$Q) and gv(Q,$Q) of the viscous flux vector ~F vðQ;rQÞ are given by
fvðQ;rQÞ ¼ l �

0

2ux þ kðux þ vyÞ
vx þ uy

u½2ux þ kðux þ vyÞ� þ vðvx þ uyÞ þ Cp

P r
T x

8>>>><
>>>>:

9>>>>=
>>>>;
; ð3:1dÞ

gvðQ;rQÞ ¼ l �

0

vx þ uy

2vy þ kðux þ vyÞ
uðvx þ uyÞ þ v½2vy þ kðux þ vyÞ� þ Cp

P r
T y

8>>>><
>>>>:

9>>>>=
>>>>;
; ð3:1eÞ
where l is the dynamic viscosity, Cp is the specific heat at constant pressure, Pr is the Prandtl number, T is the
temperature. Using the Stokes hypothesis, one obtains k = �2/3. Again following the LDG approach, we
define the following auxiliary variable:
G ¼ rQ. ð3:2Þ
Then Eq. (3.1a) becomes
oQ
ot
þr �~F eðQÞ � r �~F vðQ;GÞ ¼ 0. ð3:3Þ
Integrating (3.2) and (3.3) in Ci,j and using the Gauss�s theorem, we obtain
�Gi;jV i;j ¼
XK

r¼1

Z
Ar

QndA; ð3:4Þ

d�Qi;j

dt
V i;j þ

XK

r¼1

Z
Ar

~F eðQÞ � ndA�
XK

r¼1

Z
Ar

~F vðQ;GÞ � ndA ¼ 0. ð3:5Þ
Because Q and G are discontinuous at SV boundaries, the auxiliary flux Q in (3.4), inviscid and viscous fluxes
in (3.5) are replaced by ‘‘numerical fluxes’’ Q̂; ~F e and F̂ v. The auxiliary and viscous fluxes take the following
form:
Q̂ � QR; ð3:6Þ
F̂ v � ~F v ðQL þ QRÞ=2;GL

� �
. ð3:7Þ
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In (3.7), we also used QL instead of (QL + QR)/2, with similar, but slightly less accurate results. The inviscid
flux ~F e used here is the Roe flux splitting [18].

4. Numerical results

4.1. Accuracy study with 1D and 2D convection-diffusion equations

Extensive accuracy studies were carried out for both 1D and 2D convection and diffusion equations. In 1D,
both linear and non-linear equations are employed, and problems with exact solutions are designed to test the
local spectral volume (LSV) approach. These accuracy studies are presented next.

4.1.1. 1D linear convection-diffusion equation
The following linear equation is solved with SV schemes of various orders:
Table
L1 and

Order

2

3

4

ut þ ux � uxx ¼ 0;
subject to the initial condition of u(x, 0) = sin (x) and periodic boundary condition. The computational do-
main is [�p,p]. The numerical simulation was carried out until t = 1. The L1 and L1 errors are presented
in Table 1. Note that the LSV approach is capable of achieving the optimum orders of accuracy in all cases.

4.1.2. 1D viscous Burger�s equation

Consider
ut þ u � ux � luxx ¼ 0; x 2 ð0; 1Þ

with the following initial and boundary conditions:
uðx; 0Þ ¼ � tanh
x

2l

� �
;

uð0; tÞ ¼ 0; uð1; tÞ ¼ � tanh
1

2l

� �
.

The problem has the following exact solution:
uðx; tÞ ¼ � tanh
x

2l

� �
.

The simulation is conducted until t = 1 with various SV schemes. The L1 and L1 errors are presented in
Table 2. Note that the LSV approach is again capable of achieving the optimum orders of accuracy in all
cases.
1
L1 errors and orders of accuracy for 1D linear convection and diffusion equation (at t = 1.0)

Number of cells L1 error L1 order L1 error L1 order

10 7.60e � 03 – 9.97e � 03 –
20 2.07e � 03 1.88 2.89e � 03 1.79
40 5.46e � 04 1.92 7.86e � 04 1.88
80 1.40e � 04 1.96 2.04e � 04 1.95

10 3.83e � 04 – 5.37e � 04 –
20 4.55e � 05 3.07 6.64e � 05 3.02
40 5.57e � 06 3.03 8.16e � 06 3.02
80 6.89e � 07 3.02 1.01e � 06 3.01

10 1.24e � 05 – 1.85e � 05 –
20 7.92e � 07 3.97 1.17e � 06 3.98
40 5.01e � 08 3.98 7.43e � 08 3.98
80 3.15e � 09 3.99 4.69e � 09 3.99



Table 2
L1 and L1 errors and orders of accuracy for 1D viscous Burger�s equation (at t = 1.0)

Order Number of cells L1 error L1 order L1 error L1 order

2 10 2.12e � 03 – 1.22e � 02 –
20 6.16e � 04 1.78 4.30e � 03 1.50
40 1.73e � 04 1.83 1.33e � 03 1.69
80 4.76e � 05 1.86 3.66e � 04 1.86

3 10 4.84e � 04 – 3.43e � 03 –
20 7.62e � 05 2.67 5.25e � 04 2.71
40 1.04e � 05 2.87 7.06e � 05 2.89
80 1.36e � 06 2.93 9.12e � 06 2.95

4 10 3.17e � 05 – 2.16e � 04 –
20 1.49e � 06 4.41 9.53e � 06 4.50
40 7.31e � 08 4.35 8.62e � 07 3.47
80 4.22e � 09 4.11 6.20e � 08 3.80
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4.1.3. 1D fully nonlinear equation

Further, we consider the following fully nonlinear equation:
Table
L1 and

Order

2

3

4

ut þ u � ux �
1

2
ðu � uxÞx ¼ 0 x 2 ð0; 1Þ
with the following initial and boundary conditions:
uðx; 0Þ ¼ ex;

uð0; tÞ ¼ 1; uð1; tÞ ¼ e.
The problem has the following exact solution u(x, t) = ex.
The simulation was carried out until t = 1.0 with various SV schemes. The L1 and L1 errors are presented

in Table 3. Note that the LSV approach is again capable of achieving the optimum order of accuracy in all
cases.

4.1.4. 2D linear convection and diffusion equation

We also tested the LSV method on a 2D linear convection-diffusion equation written as
ut þ cðux þ uyÞ � lðuxx þ uyyÞ ¼ 0; ðx; yÞ 2 ð�1; 1Þ � ð�1; 1Þ; c ¼ 1; l ¼ 0:01
with the initial condition u(x,y, 0) = sin (p(x + y)) and periodic boundary condition. The exact solution is
u(x,y, t) = e�2plt sin (p(x + y � 2ct)). Two meshes, one regular and irregular as shown in Fig. 2, were used
3
L1 errors and orders of accuracy for the fully nonlinear equation (at t = 1.0)

Number of cells L1 error L1 order L1 error L1 order

10 9.52e � 04 – 2.1e � 03 –
20 2.53e � 04 1.91 6.12e � 04 1.78
40 6.52e � 05 1.96 1.65e � 04 1.89
80 1.65e � 05 1.98 4.27e � 05 1.95

10 9.32e � 06 – 2.92e � 05 –
20 1.22e � 06 2.93 3.99e � 06 2.87
40 1.56e � 07 2.97 5.21e � 07 2.94
80 1.97e � 08 2.99 6.65e � 08 2.97

10 6.30e � 08 – 2.37e � 07 –
20 4.07e � 09 3.95 1.64e � 08 3.85
40 2.59e � 10 3.97 1.07e � 09 3.94
80 1.63e � 11 3.99 6.81e � 11 3.97



Fig. 2. (a) Regular and (b) irregular ‘‘10 · 10 · 2’’ computational grids.
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in this test. The recorded L1 and L1 errors in Table 4 for the regular mesh show that the LSV approach is
capable of achieving the optimum orders of accuracy in all cases. The L1 and L1 errors for the irregular mesh
are presented in Table 5, again with nearly optimum convergence for all the schemes.

4.2. Laminar flow over a flat plate

We consider the laminar flow on an adiabatic flat plate characterized by a free stream Mach number
M = 0.3 and by a Reynolds number based on the free stream condition and on the plate length
Re = 10,000. The length of the plate is set to be L = 1.0. At x = 1.0, the thickness of the boundary layer d
is estimated to be



Table 4
L1 and L1 errors and orders of accuracy for the 2D convection-diffusion equation (at t = 1.0 on regular mesh)

Order Grid L1 error L1 order L1 error L1 order

2 10 · 10 · 2 3.73e � 02 – 5.35e � 02 –
20 · 20 · 2 8.60e � 03 2.12 1.28e � 02 2.06
40 · 40 · 2 2.16e � 03 1.99 3.25e � 03 1.98
80 · 80 · 2 5.36e � 04 2.01 8.11e � 04 2.00

3 10 · 10 · 2 2.79e � 03 – 3.91e � 03 –
20 · 20 · 2 3.40e � 04 3.04 5.10e � 04 2.94
40 · 40 · 2 4.16e � 05 3.03 6.31e � 05 3.01
80 · 80 · 2 5.21e � 06 3.00 7.97e � 06 2.98

4 10 · 10 · 2 4.14e � 05 – 5.72e � 05 –
20 · 20 · 2 2.47e � 06 4.07 3.37e � 06 4.09
40 · 40 · 2 1.47e � 07 4.07 1.95e � 07 4.11
80 · 80 · 2 8.45e � 09 4.12 1.14e � 08 4.10

Table
L1 and

Order

2

3

4
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djx¼1:0 ¼ 5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l � x
q1 � u1

r 




x¼1:0

¼ 0:05.
Therefore, the size of computational domain in the y-direction is chosen to be 20 times the boundary layer
thickness at x = 1.0 such that the flow at the top boundary is nearly inviscid. The range of computational
domain in the x-direction is [�1,1]. At the inlet, the free stream condition is imposed. At the top and exit
boundaries, the static pressure is fixed. Since there is a singularity around the leading edge of the flat plate,
the mesh is clustered in both the x and y directions to reduce its effects on the computational results. The com-
putations were performed on three triangular meshes, coarse mesh (208 cells) with eight cells along the plate,
medium mesh (832 cells) with 16 cells along the plate, and fine mesh (3328 cells) with 32 cells along the plate.

In the y direction of the coarse mesh, two cells are generated within the boundary layer near the end of the
plate to test the resolution of the boundary layer. The grid sizes in the x and y directions around the leading
edge of the plate are almost the same. Fig. 3 shows the three different meshes used in the numerical simula-
tions. Figs. 4–6 show the velocity profiles at the end of the plate, with comparison to the Blasius solution, com-
puted with 2nd, 3rd and 4th order SV schemes. The non-dimensional wall distance is defined as

y� ¼ y �
ffiffiffiffiffiffiffiffiffiffiffi
q1�U1

l�x

q
. Furthermore, the computed skin friction profiles are also compared with the Blasius solution

in Figs. 7–9. Note that the agreement gets better with grid refinements, and with higher order reconstructions.

4.3. Subsonic viscous flow over a circular cylinder

When a fluid flows over an isolated cylindrical solid barrier and the Reynolds number is great than about
50, vortices are shed on the down-stream side. The vortices trail behind the cylinder in two rolls, alternatively
5
L1 errors and orders of accuracy for the 2D convection-diffusion equation (t = 1.0 on irregular mesh)

Grid L1 error L1 order L1 error L1 order

10 · 10 · 2 5.45e � 02 – 9.26e � 02 –
20 · 20 · 2 1.43e � 02 1.93 2.44e � 02 1.92
40 · 40 · 2 3.47e � 03 2.04 6.03e � 03 2.02
80 · 80 · 2 8.07e � 04 2.10 1.42e � 03 2.09

10 · 10 · 2 5.43e � 03 – 9.94e � 03 –
20 · 20 · 2 6.75e � 04 3.01 1.36e � 03 2.87
40 · 40 · 2 8.45e � 05 3.00 1.76e � 04 2.95
80 · 80 · 2 1.12e � 05 2.92 2.40e � 05 2.87

10 · 10 · 2 1.24e � 04 – 3.87e � 04 –
20 · 20 · 2 5.77e � 06 4.43 2.51e � 05 3.95
40 · 40 · 2 2.27e � 07 4.67 1.44e � 06 4.12
80 · 80 · 2 1.67e � 08 3.76 7.83e � 08 4.20



Fig. 3. Meshes for the flat plate boundary layer case: (a) coarse mesh, (b) medium mesh, and (c) fine mesh.

Fig. 4. U-velocity profiles for the flat plate case with linear SV.
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Fig. 5. U-velocity profiles for the flat plate case with quadratic SV.

Fig. 6. Velocity profiles for the flat plate case with cubic SV.
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from the top or the bottom of the cylinder. This vortex trail is called the Von Karman vortex street or Karman
street after Von Karman�s 1912 mathematical description of the phenomenon. Since then, many numerical
and experimental studies have focused on the dynamics of vortex street formation in the near wake. Measured
values of the Strouhal number of the vortex shedding frequency at various Reynolds numbers can be found in
[32], where the Strouhal number is defined as S ¼ fv�Dc

V . Here, Dc is the diameter of the cylinder, fv the frequency
of vortex shedding, and V the free stream velocity. Let the center of the cylinder be located at the origin, and
the diameter be 1. The computational domain is selected to be (�10,16) · (�10,10), and the computational
grid is displayed in Fig. 10. The grid has a total of 3516 cells.

The flow is assumed subsonic with a free stream Mach number M = 0.2, and the Reynolds number based
on the free stream condition and the cylinder diameter is Re = 75. The cylinder is assumed to be adiabatic. In
order to trigger the nonsymmetric vortex shedding, the initial condition has a small upward velocity compo-
nent. Both the 3rd and 4th order SV schemes were employed in the simulations, and the results are nearly iden-
tical. After a sufficiently long time, the effects of the initial condition propagate out of the computational
domain, and a periodic shedding of vortices is observed. Instantaneous contours of entropy, and vorticity



Fig. 7. Skin friction coefficients along a flat plate with linear SV.

Fig. 8. Skin friction coefficients along a flat plate with quadratic SV.

Fig. 9. Skin friction coefficients along a flat plate with cubic SV.

52 Y. Sun et al. / Journal of Computational Physics 215 (2006) 41–58



Fig. 10. Grid for the case of subsonic flow over a circular cylinder: (a) global grid and (b) grid near the cylinder.
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showing the Von Karman vortex street generated by the cylinder are presented in Figs. 11 and 12. The periodic
nature of the flow is shown in Fig. 13, which plots the pressure as a function of time calculated at (10,1). The
period (and thus the frequency) of the oscillations can be found from the pressure history. Based on the com-
puted frequency, the Strouhal number is found to be 0.151, which agrees well with the measured value of
0.148, found in [32].

4.4. Laminar flow around a NACA0012 airfoil

In this test, we consider a subsonic viscous flow problem over the NACA0012 airfoil at an angle of attack
a = 0�, free stream Mach number M = 0.5, and Reynolds number Re = 5000. This is a widely used validation
Fig. 11. Instantaneous entropy contours for M = 0.2 flow over a circular cylinder at Re = 75.



Fig. 12. Instantaneous vorticity contours for M = 0.2 flow over a circular cylinder at Re = 75.

Fig. 13. Pressure history at (x,y) = (10,1) for M = 0.2 flow over a circular cylinder at Re = 75.

Fig. 14. Computational grid for subsonic viscous flow over the NACA0012 airfoil.
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Fig. 15. Mach contours around the NACA0012 airfoil with various SV schemes (Re = 5000, M = 0.5, a = 0�). (a) 2nd order; (b) 3rd
order; and (c) 4th order.
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Fig. 16. Pressure coefficient distributions along the NACA0012 airfoil (Re = 5000, M = 0.5, a = 0�).

Fig. 17. Skin friction coefficient distributions along the NACA0012 airfoil (Re = 5000, M = 0.5, a = 0�).
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case for viscous flow solvers [15]. The computational grid is displayed in Fig. 14, which is generated from the
triangulation of a 64 · 16 O-grid. The larger number refers to the number of cells distributed along the airfoil
surface and the smaller one the number of cells in the radial direction. The grid extents about 20 chords away
form the airfoil. The computations were performed using linear, quadratic and cubic SVs. The wall is assumed
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to be non-slip and adiabatic, and is represented by a cubic curve [31]. The Reynolds number is near the upper
limit for a steady laminar flow. A distinguishing feature of this test case is the separation region of the flow
occurring near the trailing edge, which causes the formation of a small recirculation bubble that extends in the
near-wake region of the airfoil.

Fig. 15 shows the Mach contours computed with linear, quadratic and cubic SVs. It is obvious that the
solution is getting smoother and smoother with the increasing of the order of polynomial reconstruction, indi-
cating the solution is more accurate. Figs. 16 and 17 show the pressure coefficient (Cp) and skin friction coef-
ficient (Cf) distributions along the airfoil computed with linear, quadratic, and cubic SVs. Note that the
agreement in the computed Cp profiles is excellent with the 2nd, 3rd and 4th order schemes. There is also close
agreement in the computed Cf profiles, indicating the numerical results are approaching order-independence.
It is obvious from Fig. 17(b) that the 3rd and 4th order SV schemes predicted nearly the same separation
point.

5. Conclusions

The SV method is successfully extended to the Navier–Stokes equations by following a mixed formulation
named the local discontinuous Galerkin approach originally developed for the DG method. The approach,
which is named the local SV (LSV) approach, is tested extensively for 1D and 2D convection-diffusion equa-
tions using a serious of accuracy studies. All tests indicated that the formulation is capable of achieving the
formal optimum order of accuracy in both the L1 and L1 norms. The LSV approach is then implemented
and tested for the Navier–Stokes equations, and used to compute several benchmark viscous flow problems.
Good agreement has been achieved with analytical solutions or other simulations. Work is now underway to
extend the SV method to three-dimensional Navier–Stokes equations, and to develop more efficient implicit
solution algorithms to speed up the convergence rate to the steady state.
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